ON UNIFORM ROTATIONS OF A
 BODY WITH A FIXED POINT

(O RAVNOMBRNEKC VRASHCHENIIAKH TELLA, IMEIUSHOHEGO NEPODVITKHNUU TOCHKU)

PMM Vol.29, № 2, 1965, pp.373-375
P.V.KHARLAMOV
(Novosibirsk)
(Recelved July 4, 1963)

1. Initial equations. If a body is acted upon by the gravity forces and contains spinning masses (fly-wheels or liquid, circulating in multiply connected cavities), then its equations of motion are those shown in [1] which in the conventional notation [2] have the form

$$
A p^{*}-(B-C) q r+\lambda_{2} r-\lambda_{3} q+e_{2} \gamma_{3}-e_{3} \gamma_{2}, \quad \quad \tau_{1}^{*}=r \gamma_{2}-q \tau_{3}
$$

(123. ABC, pqr)
or in vector notation

$$
\begin{equation*}
\mathbf{x}^{*}=(\mathbf{x}+\lambda) \times \omega+\mathbf{e} \times \boldsymbol{y}, \quad \boldsymbol{\gamma}^{*}=\boldsymbol{\gamma} \times \omega \tag{1.1}
\end{equation*}
$$

Using the integrals

$$
\begin{equation*}
1 / 2 \boldsymbol{\omega} \cdot \mathbf{x}-\mathbf{e} \cdot \boldsymbol{\gamma}=E, \quad(\mathbf{x}+\lambda) \cdot \boldsymbol{\gamma}=k, \quad \boldsymbol{\gamma} \cdot \boldsymbol{\gamma}=\Gamma^{2} \tag{1.2}
\end{equation*}
$$

we can easily transform them [3] into

$$
\begin{gather*}
\mathbf{e} \cdot\left[\mathbf{x}^{\bullet}+\omega \times(\mathbf{x}+\lambda)\right]=0 \tag{1.3}\\
{\left[\mathbf{x}^{*}+\omega \times(\mathbf{x}+\hat{\lambda})\right] \cdot[\mathbf{e} \times(\cdots-\lambda)]+\mathbf{e} \cdot(\mathbf{x}+\lambda)(1 / 2 \boldsymbol{\omega} \cdot \mathbf{x}-E)=k} \\
{\left[\mathbf{x}^{\cdot}+\omega \times(\mathbf{x}+\lambda)\right]^{2}+(1 / 2 \boldsymbol{\omega} \cdot \mathbf{x}-E)^{2}=\Gamma^{2}} \\
\boldsymbol{\gamma}=(1 / 2 \omega \cdot \mathbf{x}-E) \mathbf{e}+\left[\mathbf{x}^{*}+\omega \times(\mathbf{x}+\lambda)\right] \times \mathbf{e}
\end{gather*}
$$

2. The cone of the axes of the uniform rotation. Let the angular velocity vector be constant with respect to the body, $w=$ const, then also x $=$ const and from (1.3)

$$
\begin{equation*}
\mathbf{e} \cdot[\omega \times(x \notin \lambda)]=0 \tag{2.1}
\end{equation*}
$$

In Section 4 we shall investigate the case $\omega=\omega$, while here we assume that

$$
\begin{gather*}
\boldsymbol{\omega} \neq \omega \mathrm{e} \tag{2.2}\\
\mathbf{x}+\boldsymbol{\lambda}=\boldsymbol{\alpha} \boldsymbol{\omega}+3 \mathbf{e} \tag{2.3}
\end{gather*}
$$

where α and β are certain constants. Substituting (2.3) in (1.1), we
obtain

$$
\mathbf{e} \times \boldsymbol{\gamma}=\beta(\boldsymbol{\omega} \times \mathbf{e}), \quad \text { or } \quad \boldsymbol{\gamma}=\mu \mathbf{e}+\beta(\omega \times \mathbf{e}) \times \mathbf{e}
$$

We define the constant μ from the last equation in (1.2) and obtain

$$
\begin{equation*}
\gamma=(\omega \times e) \times e+e \sqrt{\Gamma^{2}-\beta^{2}[(\omega \times e) \times e]^{2}} \tag{2.4}
\end{equation*}
$$

showing that the vector γ is also constant with respect to the body and by (1.1) $\gamma \times \omega=0$. We conclude that the axis of rotation must be vertical

$$
\begin{equation*}
\boldsymbol{v}=\frac{\Gamma}{\omega} \omega \tag{2.5}
\end{equation*}
$$

By (2.4) and (2.5) we have that

$$
(\beta+\Gamma / \omega) \omega=\left\{\beta \omega \cdot \mathrm{e}+\sqrt{\Gamma^{2}-\beta^{2}[(\omega \times e) \times e]^{2}}\right\} \mathbf{e}
$$

By (2.2) this is only possible when $\beta=-\Gamma / \omega ;$ substituting this in (2.3), we obtain

$$
\begin{equation*}
x+\lambda=\alpha \omega-(\Gamma / \omega) \mathbf{e}, \quad \text { or } \quad \omega \times(x+\lambda)=(\Gamma / \omega)(\mathrm{e} \times \omega) \tag{2.6}
\end{equation*}
$$

Dot multiplying the last equation in (2.6) by λ, we find

$$
\begin{equation*}
\lambda \cdot(\omega \times \mathbf{x})=(\Gamma / \omega) \omega \cdot(\lambda \times \mathrm{e}) \tag{2.7}
\end{equation*}
$$

In the coordinate system fixed in the body Equations (2.1) and (2.7) determine surfaces whose intersection is the directrix curve of the cone of axes of uniform rotation. When $\lambda \rightarrow 0$ this cone becomes the cone $e \cdot(\omega \times x)=0 \quad(s t a u d e[4])$.
3. Rquations of the oone in the prinalpal ooordinate axas. We shall write (2.1) and (2.7) in the form

$$
\begin{gather*}
(B-C) e_{1} q r+(C-A) e_{2} r p+(A-B) e_{3} p q+ \\
\quad+\left(\lambda_{3} e_{2}-\lambda_{2} e_{3}\right) p+\left(\lambda_{1} e_{3}-\lambda_{3} e_{1}\right) q+\left(\lambda_{2} e_{1}-\lambda_{1} e_{2}\right) r=0 \tag{3.1}\\
{\left[(B-C) \lambda_{1} q r+(C-A) \lambda_{2} r p+(A-B) \lambda_{3} p q\right] V p^{2}+q^{2} \not+r^{2}} \\
+\left[\left(\lambda_{2} e_{3}-\lambda_{3} e_{2}\right) p+\left(\lambda_{9} e_{1}-\lambda_{1} e_{3}\right) q+\left(\lambda_{2}-\lambda_{2} e_{1}\right) r \Gamma \Gamma=0\right. \tag{3.2}
\end{gather*}
$$

Both these surfaces are at the origin tangent to the plane

$$
\begin{equation*}
\left(\lambda_{3} e_{2}-\lambda_{2} e_{3}\right) p+\left(\lambda_{1} e_{3}-\lambda_{3} e_{1}\right) q+\left(\lambda_{2} e_{1}-\lambda_{1} e_{2}\right) r=0 \tag{3.3}
\end{equation*}
$$

The asymptotic cone of the surface (3.1) is the cone of staude

$$
\begin{equation*}
(B-C) e_{1} q r+(C-A) e_{2} r p+(A-B) e_{3} p q=0 \tag{34}
\end{equation*}
$$

The asymptotic cone of the surface (3.2) is described by Equation

$$
(B-C) \lambda_{1} q r+(C-A) \lambda_{2} r p+(A-B) \lambda_{3} p q=0
$$

The form of the surface (3.1) is determined by

$$
I_{1}=e_{1} e_{2} e_{3}(B-C)(C-A)(A-B), \quad I_{2}=\left|\begin{array}{rrr}
\lambda_{1} & \lambda_{2} & \lambda_{3} \tag{3.5}\\
e_{1} & e_{2} & e_{3} \\
A e_{1} & B e_{2} & C e_{3}
\end{array}\right|
$$

When $I_{1} I_{2} \neq 0$, then (3.1) becomes the equation of one sheet of a hyperbolold; in the case when $I_{1} \neq 0, I_{3}=0$ becomes the equation of a cone; when $I_{1}=0$, but $I_{2} \neq 0$, then (3.1) becomes the equation of a hyperbolic paraboloid, and finally when $I_{1}=0$ and $I_{2}=0$ then (3.1) determines two planes. In the case when $\lambda=\lambda$ the plane (3.3) vanishes. In addition both these planes colncide with the cone (3.4).

Instead of (3.2) we can consider the surface

$$
\begin{equation*}
\frac{\omega}{\Gamma}=-\frac{(B-C) e_{1} q r+(C-A) e_{2} r p+(A-B) e_{3} p q}{(B-C) \lambda_{1} q r+(C-A) \lambda_{2} r p+(A-B) \lambda_{3} p q} \tag{3,6}
\end{equation*}
$$

Let us consider the following method of investigating the cone of the axes of uniform rotation. We shall set $p=\omega \xi_{1}, q=\omega \xi_{2}, r=\omega \xi_{3}$. Obviously

$$
\begin{equation*}
\xi_{1}^{2}+\xi_{2}^{2}+\xi_{3}^{a}=1 \tag{3.7}
\end{equation*}
$$

Equations (3.1) and (3.6) give

$$
\begin{array}{r}
\omega=\frac{\left(\lambda_{2} e_{3}-\lambda_{3} e_{2}\right) \xi_{1}+\left(\lambda_{3} e_{1}-\lambda_{1} e_{3}\right) \xi_{2}+\left(\lambda_{1} e_{2}-\lambda_{2} e_{1}\right) \xi_{3}}{(B-C) e_{1} \xi_{2} \xi_{3}+(C-A) e_{2} \xi_{3} \xi_{1}+(A-B) e_{3} \xi_{1} \xi_{2}} \tag{3.8}\\
\omega=-\Gamma \frac{(B-C) e_{1} \xi_{2} \xi_{3}+(C-A) e_{2} \xi_{3} \xi_{1}+(A-B) e_{3} \xi_{1} \xi_{2}}{(B-C) \lambda_{1} \xi_{2} \xi_{3}+(C-A) \lambda_{2} \xi_{3} \xi_{1}+(A-B) \lambda_{3} \xi_{1} \xi_{2}}
\end{array}
$$

Hence

$$
\begin{gather*}
{\left[(B-C) e_{1} \xi_{2} \xi_{3}+(C-A) e_{2} \xi_{3} \xi_{1}+(A-B) e_{3} \xi_{1} \xi_{2}\right]^{2} \Gamma+} \\
+\left[(B-C) \lambda_{1} \xi_{2} \xi_{3}+(C-A) \lambda_{2} \xi_{3} \xi_{1}+(A-B) \lambda_{3} \xi_{1} \xi_{2}\right]\left[\left(\lambda_{2} e_{3}-\lambda_{3} e_{2}\right) \xi_{1}+\right. \tag{3.9}\\
\left.+\left(\lambda_{3} e_{1}-\lambda_{1} e_{3}\right) \xi_{2}+\left(\lambda_{1} e_{2}-\lambda_{2} e_{1}\right) \xi_{3}\right]=0
\end{gather*}
$$

Equation (3.9) determines on the unit sphere (3.7) the line of intersection of this sphere with the cone of the axes of uniform rotation (*).

We shall show a coordinate system which can be ugeful in the investigation of cones of the axes of permanent rotation. The unit vectors of this system are

$$
\partial_{1}=\frac{e \times \lambda}{\lambda}, \quad \partial_{2}=e, \quad \partial_{3}=\frac{(e \times \lambda) \times e}{\lambda}
$$

Let x be the angle between and λ, then

$$
\begin{equation*}
\lambda=\lambda\left(a_{2} \cos x+a_{3} \sin x\right) \tag{3.10}
\end{equation*}
$$

We shall substitute (3.10) and the vectors

$$
\omega=\omega_{1} \mathrm{a}_{1}+\omega_{2} \mathrm{o}_{2}+\omega_{3} \mathrm{a}_{3}, \quad \mathbf{x}=x_{1} \mathrm{a}_{1}+x_{2} \mathrm{a}_{2}+x_{3} \mathrm{\partial}_{3}
$$

(besides $x_{i}=A_{i 1} \omega_{1} \neq A_{i 2} \omega_{2}+A_{i s} \omega_{3}$) in (2.1) and (2.7)

$$
\begin{array}{r}
\left(A_{39}-A_{11}\right) \omega_{1} \omega_{3}+A_{31}\left(\omega_{1}^{2}-\omega_{3}^{2}\right)+A_{23} \omega_{1} \omega_{2}-A_{12} \omega_{2} \omega_{3}-\lambda \omega_{1} \sin x=0 \\
{\left[\left(A_{22}-A_{11}\right) \omega_{1} \omega_{2}+A_{21}\left(\omega_{1}^{2}-\omega_{2}^{2}\right)+A_{23} \omega_{1} \omega_{3}-A_{12} \omega_{2} \omega_{3}-\right.} \\
\left.-\lambda \omega_{1} \cos x\right] \sqrt{\omega_{1}^{2}+\omega_{2}^{2}+\omega_{3}^{2}}+\Gamma \omega_{1}=0
\end{array}
$$

4. The epeoial oase $\omega=\omega$. In this case by (1.1) we have

$$
\begin{equation*}
\gamma=\alpha e+\omega(x+\lambda) \tag{4.1}
\end{equation*}
$$

The quantity α is determined from (1.2)

$$
\alpha^{2}+2 \alpha \omega e \cdot(x+\lambda)+\omega^{2}(x+\lambda)^{2}=\Gamma^{2}
$$

and is constant. Consequently the vector y is a constant and in this case we have $\gamma=\Gamma e$. Hence by (4.1) we have $x+\lambda=\gamma e$, or in terms of the principal axes

$$
\begin{equation*}
\omega A e_{1}-v e_{1}+\lambda_{1}=0 \quad(A B C, 123) \tag{4,2}
\end{equation*}
$$

Eliminating w and v, we find that $I_{2} m 0$, where I_{g} is given by (3.5).

In the general case this condition means that a uniform rotation of a

[^0]body about an axis through the center of gravity is possible under the condition that the vector λ is in the plane of the axis of rotation and of the normal to the ellipsoid of inertia passing through the point of intersection of the elipsoid with the axis of rotation. In particular, if the center of gravity is in one of the principal axes $e_{2}=e_{3}=0$, then by (4.2) we have $\lambda_{2}=\lambda_{3}=0$, which means that the vector λ^{2} should be directed along this principal axis. The magnitude of the angular velocity can be in this case completely arbitrary.

BIBLIOGRAPHY

1. Zhukovskii, N.E., 0 dvizhenil tverdogo tela, imeiushchego polosti napolnennye kapel'noi zhidkost'iu (on the motion of a rigid body with liquid-filled cavities). Complete Works, Vol.III, ONII, 1936.
2. Kharlamov, P.V., Odno reshenie zadachi o dvizhenii tela, imeiushchego nepodvizhnuiu tochki (A solution for the motion of a body with a fixed point). $P N M$ Vol.28, NP 1, 1964.
3. Kharlamov, P.V., Ob uravnenilakh dvizheniia tirzhelogo tverdogo tela, imeiushchego nepodvizhnuiu tochku (on the equations of motion for a heavy body with a fixed point). PNM Vol. 27, Na 4, 1963.
4. Staude, 0. , ther permanente Rotationaxen bei der Bewegung eines scr.weren Körpers um einen festen Punkt. J.reine angew.Math., Vol.113, 1894.
5. Drofa, V.N., o permanentnykh osiakh dvizhenila tiazhelogo girostata okolo -nepodvizhnoi tochki (On the permanent axes of motion for a heavy gyrostat near an immovable point). PMN Vol.25, N 5, 1961.
6. Anchev, A., Ob ustoichivosti permanentnykh vrashchenil tiazhelogo girostata (On the stability of permanent rotations of a heavy gyrostat). PMN Vol.26, NI 1, 1962.
7. Anchev, A., $V^{\prime \prime}$ rkhu permanentnite rotatsil na te $\mathrm{zh}^{\prime \prime} k$ zhirostat (on the permanent rotations of a heavy gyrostat).God.minno-geol.Inst.Sof., Vol.8, 1961-1962 (1963).

[^0]: *) For the case $\omega=$ const V.N.Drofa [5] introduced a redundant requirement that the coefficients of the corresponding equations should be proportional. consequently, he concluded erroneously that a heavy gyrostat has in a general case only one axis of uniform rotation. A. Anchev [6 and 7] made the same mistake.

